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We present a direct evaluation of the excess entropy for two-
center-Lennard-Jones liquids from the canonical ensemble
average of scaled acceptance ratios during a single Monte Carlo
or molecular dynamics simulation. The scaled acceptance ratios
are averaged over virtual random configurations generated by
separate parallel Monte Carlo procedures. No reference system is
needed except the ideal gas and so the absolute excess entropy is
obtained. The method is extremely efficient.

The evaluation of the free energy and the entropy for
chemical and biological systems has been a topic of fundamental
importance. However, it is very difficult to calculate themdirectly
from computer simulations. Owing to recent rapid progress in the
field of computer simulation, a number of methods have been
proposed for their evaluation.1{3 Thermodynamic integration1{3

often used in the absence of any appropriate method requires a
large number of simulations to evaluate the free energy at a
particular condition. The particle insertion (PI) method,4

successfully applicable for simple systems, is hard to apply for
high-density phases due to the extremely low acceptance ratio of
the test particle. The method has been modified to the cavity
insertion method5 and applied to biological transport processes.6

The temperature-and-density-scaling Monte Carlo method7

evaluates the relative excess free energies and so it requires
enormous calculations for a wide range of temperatures and
densities with a relevant reference system. The overlap ratio
method,8 originated from the acceptance ratio method of
Bennett,9 evaluates the free energy difference from the
comparison of energy distributions. For successful applications
of these methods,8;9 the difference between the model system and
the reference onemust be small. A fluctuating cell model,10 using
the Metropolis algorithm11 to generate the canonical ensemble,
has been proposed recently. However, its application has been
limited only to two-dimensional hard dumbbells in the high-
density phases. Thus a general method for the direct evaluation of
the free energy or the entropy has not been known up to date.

An efficient method,12 originated from the cell model,13 has
been proposed for the direct evaluation of the excess entropy of
model potential systems. In the method, the excess entropy of a
system having N molecules was approximately expressed
utilizing the effective acceptance ratio f ðrR; rÞ as

Sex

Nk
¼ ln

R
�
f ðrR; rÞ expð��=kTÞdqR
�
expð��=kTÞdq

¼ ln < f ðrR; rÞ >�; ð1Þ

where r, rR, and � are a configuration of a molecule sampled
during the Metropolis Monte Carlo11 or the constant NVT
molecular dynamics3 simulation, a virtual random configuration
generated by a separate parallelMonte Carlo procedurewithin the
cell �, and the potential energy of the molecule at the

configuration r, respectively. The excess entropy is easily
changed into the absolute entropy by adding the entropy of the
ideal gas to the excess entropy. In equation 1, < f ðrR; rÞ >�

denotes the canonical ensemble average of f ðrR; rÞ at rR generated
within the cell. The effective acceptance ratio has been expressed
as12

f ðrR; rÞ ¼
exp½�ð�R � �Þ=kT� if �R � �;

1þ 2:3fexp½�ð�R � �Þ=2kT� � 1g if �R < �;

(

ð2Þ

where �R is the potential energy at rR of the sampled molecule.
The cell has been selected as a cube with a fixed volume V=N,
centered at the molecule sampled during computer simulation.

Even though it is almost impossible to evaluate the free
energy throughout averaging the Boltzmann factors,1 the average
of f ðrR; rÞ reduces the fluctuation arising from the evaluation of
the excess entropy considerably.12 Nevertheless, the significant
fluctuation still remains in themethod. Therefore it would be hard
to apply the method generally to complex systems. Thus the
acceptance ratio aðrR; rÞ may be averaged instead of f ðrR; rÞ to
reduce large fluctuations further. Here aðrR; rÞ is expressed as

aðrR; rÞ ¼
exp½�ð�R � �Þ=kT� if �R � �;

1 if �R < �:

(
ð3Þ

The average of aðrR; rÞ gives much more stable value compared
with that of f ðrR; rÞ. If aðrR; rÞ instead of f ðrR; rÞ is averaged in
equation 1, the excess entropy becomes inevitably under-
estimated. Hard-sphere and hard-dumbbell fluids can have
merely 0 or 1 as an acceptance ratio. Their excess entropies14

were evidently underestimated when the averages of aðrR; rÞwere
used. This implies that the excess entropy is systematically
underestimated regardless of specific model potentials when
aðrR; rÞ is averaged. If aðrR; rÞ is to be used, the systematic
underestimation has to be corrected. In this Letter we have
introduced a scaling factor for the correction.We have applied the
method to the two-center-Lennard-Jones (2CLJ) system.8;15;16

The 2CLJ system bridges a gap between simple systems such as
the Lennard-Jones system and complex systems. The homo-
nuclear 2CLJ potential U2CLJ composed of four Lennard-Jones
potentials ULJðrijÞ has the form

U2CLJ ¼
X2
i; j¼1

ULJðrijÞ;

ULJðrijÞ ¼ 4"
�

rij

� �12

�
�

rij

� �6
( )

; ð4Þ

where " is the potential energy well depth, � is the length
parameter with ULJð�Þ ¼ 0, and i and j denote two interaction
sites on differentmolecules. The distance between two interaction
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sites on one molecule is denoted by the elongation l. The reduced
quantities T�, 	� and l� denote kT=", 	�3 and l=�, respectively.
We have performed calculations for the 2CLJ liquids with l� ¼
0:3292 as a model of liquid nitrogen.

The scaling factor for the above-mentioned correction can be
obtained easily throughout simple test calculations at several
conditions. It has been adjusted to 3:3� 2:25	� as a linear
function of the density. Thus the scaled acceptance ratio sðrR; rÞ is
expressed as

sðrR; rÞ ¼ ð3:3� 2:25	�ÞaðrR; rÞ: ð5Þ

It is noteworthy that the change of the scaling factor with the
variation of the density is small. Themethod utilizing the average
of sðrR; rÞ will be named as the scaled acceptance ratio (SAR)
method. The scaled acceptance ratio becomes 1.95 aðrR; rÞ at
	� ¼ 0:6 and it is compared with f ðrR; rÞ, aðrR; rÞ, and the
Boltzmann factor as functions of �ð�R � �Þ=kT in Figure 1.

In each configuration sampled during the Metropolis Monte
Carlo simulation, a sampled molecule is moved temporarily to rR
and rotated freely. Then sðrR; rÞ is evaluated at rR and averaged.
Thereafter the virtual configuration is removed and the usual
Metropolis Monte Carlo procedure is performed. The SAR
method can be applied directly to molecular dynamics simulation
because the separate Monte Carlo procedure is executed in
parallel for the average of sðrR; rÞ. At each time step of molecular
dynamics, sðrR; rÞ is averaged throughout the separate Monte
Carlo procedure. The excess Helmholtz free energy Aex is
obtained by

Aex ¼ U � TSex; ð6Þ

where U is the averaged potential energy of the 2CLJ system.
For the 2CLJ liquids, 108 molecules were used in the

simulation and about 1� 106 configurations were averaged after
equilibration. Only one atom was moved at a time. The long-
range energy correction and the periodic boundary conditionwere
used and the cutoff distance was half the box length.

The excess Helmholtz free energies for the 2CLJ liquids with
l� ¼ 0:3292 are listed in Table 1. Our results utilizing the average
of sðrR; rÞ are in good agreement with those of the overlap ratio
method8 and the perturbation theories.15;16 The relative errors of
the SAR method in the evaluation of the excess entropy are
estimated to be within 0.5%.

The SARmethod is very easy to implement and does not need
any reference system except the ideal gas. Consequently, the

method gives the absolute excess free energy instead of the
relative excess free energy and also can overcome the difficulties
arising from phase transitions of high-density fluids or solids.17

Ourmethod is extremely efficient, as reported elsewhere.12;14 The
SAR method may be successfully extended and applied to
water,18 solutions, and biological systems as if the PImethod4 has
been modified5 and applied to biological transport processes.6
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Figure 1. The scaled acceptance ratio at 	� ¼ 0:6

(dashed), the effective acceptance ratio (dotted), the

acceptance ratio (dash-dotted), and the Boltzmann factor

(solid) with the variation of �ð�R � �ÞkT .

Table 1. Excess Helmholtz free energiesAex=NkT of the 2CLJ liquids with

the elongation l� ¼ 0:3292

T� 	� SARa Previous results

3.0 0.70 �1.66 �1.73,b �1.71c

0.68 �1.72 �1.75,d �1.81c

0.66 �1.83 �1.83,d �1.89c

0.64 �1.88 �1.90,d �1.95c

0.62 �1.98 �1.95,d �1.99c

0.60 �2.01 �2.01,b �2.02c

2.0 0.70 �4.70 �4.68,b �4.67c

0.68 �4.73 �4.72,d �4.71c

0.66 �4.72 �4.72,d �4.72c

0.64 �4.68 �4.69,d �4.67c

0.62 �4.65 �4.66,d �4.66c

0.60 �4.62 �4.58,b �4.60c

1.55 0.70 �7.43 �7.37,b �7.39c

0.68 �7.39 �7.37,d �7.36c

0.66 �7.33 �7.30,d �7.29c

0.64 �7.24 �7.18,d �7.19c

0.62 �7.12 �7.08,d �7.07c

0.60 �6.97 �6.97,b �6.92c

aCalculated from the average of sðrR; rÞ. bRef 8. cRef 15. dRef 16.
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